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INVESTIGATION OF THE STABILITY OF MOTION OF A COMPRESSIBLE GAS
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Some recent investigations have been concerned
with stability problems of the motion of a gas of con-
stant density in its own gravitational field [1-3]. The
same methods can be used to study the behavior of a
spherically symmetric mass of compressible gas
with a spatially constant density in the absence of
gravity.
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As the principal parameters of motion we consider
the density p and velocity u:
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where r is the Euler radius, p, is a constant, t — +e
stands for expansion and t — — for compression.
This motion corresponds to omnidirectional expan-
sion or compresion; the motion remains spherically
symmetrical with respect to any point in space. In
the following, we consider the motion to be adiabatic,
with an adiabatic exponent 2 > v >1 (real gas).

1. It seems appropriate first to discuss qualita-
tively the causes of onset of instability. In the pre-
sence of gravity, the principal cause of instability is
the gravity force; both pressure and viscosity are
only capable of weakening instability (in Newtoman
theory).

In the absence of gravity, the cause of instability
is kinematics. It appears that any motion of a com~
pressible substance with a spatially constant density
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possesses the following peculiarity: if the same mo-
tion occurs in a separate region of space, but a time
lead is involved
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(A is small except in the region of joint solutions),
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For compression (t — —0) the solution involving a
time lead begins to depart rapidly from the basic one.
Con51der1ng the time-lead solution as a disturbance
imposed on the basic solution (such disturbances have
been examined by Zel'dovich [3]), its solution will
depend to a gre'at extent on the equation of state.

In qualitative terms, this is explained by the fact
that the problem contains two velocities: Euler's
velocity u = r/t, that depends on the radius, and the
speed of sound c that is constant in space.
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If at any point in space there is a spherically sym-
metrical disturbance, the center of this disturbance
can always be taken as the origin of the system of
coordinates. If the initial dimensions of the distur-
bance are not considered, then in the spreading of the
disturbance in the r, t plane, the trajectory of its
boundary will be the curve
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Here, the plus and minus signs correspond to com-
pression and expansion, respectively. From this ex-
ample and the figure (where r' =3/2(y — 1)c,"tF), it
can be seen that at y < 5/3 the compression is un-
stable; on the other hand, the expansion is of such a
nature that as t — «, the disturbance is spread over
a finite mass (M ~ r’/t%), i.e., p~l6p — const.

2. Let us make a more exact analysis. The dis-
turbed motion is represented in the form

p=rip M+ o 1],
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Introducing Lagrange coordinates (mass ~ ord ~
~ 3/}, R=r/t), the continuity equation and the
Navier-Stokes equation can be readily written in the
form
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The first equation indicates that if the disturbance
has not yet appeared at radius Ry, then
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Combining the equations (2.2) and (2.3), it is pos~
sible to obtain an equation for w(R,t). We will develop



J. APPL, MECH. AND TECH. PHYS.

the solution of this equation in a series (or an integral,
depending on the boundary conditions)
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The function w(k, t) satisfies the equation
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The viscosity of the gas is proportional to VT,
where T is the temperature, i.e.,

N~ T‘/: ~ pllﬁ(Y"l) —~ t‘slz('\’-l),

it is obvious that for any wavelength, in compres-
sion, there is a moment of time, starting from which
viscosity may be neglected, while in the case of ex-
pansion, viscosity may be neglected at moments that
are close to the onset of disturbance. We may, there-
fore, examine the motion without considering visco-
sity. Then the equation reduces to the Bessel equa-
tion (c? = ¢, [t|=*V"1), Its solution (for y = 1) is

ok, 1) =1t](CJ, (1) + CJ ., (@)},
where
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o (k, £y — 1 ¢ O cos [o o 1gmv — Yam] (2.6)

Hence for compression, it can be seen that the
motion is unstable if ¥ < 5/3. The amplitude of the
standing wave increases in an oscillatory fashion. If
v >5/3, the motion is stable. The amplitude of the
standing wave decreases.
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In the case of expansion, at a moment close to
the onset of disturbance (t increasing, but still close
to +0), we have the reversed pattern. The motion is
stable for vy < 5/3 and unstable for v >5/3. For ex-
pansion, when t — +w,

2.7)

o (k, t) — const ,

the disturbance tends toward a finite value. Thus,
the results of an exact analysis fully support the qua-
litative analysis.

The motion may be unstable. Instability is defined
by the equation of state, and is independent of the
wavelength (for v = 1).

In the isothermal case {y = 1), if viscosity is ne~
glected, the equation (2.4) has the solution

o (k, £) = Cit™ - Cpt™, wa=Yok Vis—C—J2,

where C; and C, are constants; when o is complex, Cy =
= c;‘. In the isothermal case, the motion is unsteady
and, contrary to the general case, the increase in
amplitude depends on the wavelength.

In all cases, for expansion at large intervals of
time the influence of viscosity becomes apparent,
which ensures attenuation, as can be seen from (2.4).
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